
J. Fluid Mech. (2004), vol. 501, pp. 1–24. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112003006220 Printed in the United Kingdom

1

Translational motion of a bubble undergoing
shape oscillations

By ALEXANDER A. DOINIKOV
Institute of Nuclear Problems, Belarus State University, 11 Bobruiskaya Street, Minsk 220050, Belarus

doinikov@inp.minsk.by

(Received 15 April 2002 and in revised form 19 June 2003)

This paper studies the nonlinear coupling between the volume pulsation, translational
motion and shape modes of an oscillating bubble, especially in the context of
translational instability, known as ‘dancing motion’, that is demonstrated by bubbles
in acoustic standing waves. A set of coupled equations is derived that describes volume
pulsations of a bubble, its translational motion and shape oscillations evolving on the
bubble surface. The amplitudes of the surface modes and the translational velocity of
the bubble are assumed to be small and allowed for in the equations of motion up
to only second-order terms. The amplitude of the volume oscillation is not limited.
Unlike earlier work on this subject, where only two adjacent shape modes with given
natural frequencies are taken into account, we allow for all shape modes and do not
impose any limitations on their natural frequencies. As a result, the present analysis
reveals additional features, which have not been noted previously, inherent in the
mutual interactions of the shape modes as well as in the interaction between the
shape modes and the translational motion.

1. Introduction
When a gas bubble in a liquid is subjected to a standing acoustic wave, it moves

towards either the pressure node or the pressure antinode, depending on the relation
between its resonant (Minnaert) frequency and the driving frequency of the acoustic
field, and is held there as long as the sound is on. This effect is explicable on the basis
of the well-known formula, derived by Eller (1968), which gives the so-called primary
Bjerknes force experienced by a spherical bubble in a standing sound wave. However,
the bubble behaviour described occurs only in relatively weak acoustic fields. When
the acoustic pressure amplitude exceeds a threshold value, the trapped bubble begins
an erratic motion called ‘dancing motion’. This curious phenomenon was first noticed
by Gaines (1932) and has been reported by many others ever since (Kornfeld &
Suvorov 1944; Benjamin & Strasberg 1958; Strasberg & Benjamin 1958; Benjamin
1964; Eller & Crum 1970).

Benjamin & Strasberg (1958; see also Benjamin 1964) suggested that the erratic
dancing motion of a bubble trapped in a standing acoustic wave is caused by the
presence of shape oscillations that are parametrically excited by the bubble pulsations.
In an attempt to verify this suggestion, they compared measured thresholds for
the onset of dancing to calculated thresholds for the onset of shape oscillations.
Oversimplifications in their theoretical approach, however, prevented adequate
agreement of theory with experiment. Several years later, a similar study was made
by Eller & Crum (1970), who applied a more accurate method of calculation and in
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consequence obtained good agreement between the measured dancing thresholds and
the calculated shape-oscillation thresholds. It has since been universally recognized
that the dancing bubble motion in sound fields is caused by parametrically excited
shape oscillations.

The next step in revealing mechanisms responsible for the bubble dancing was made
by Benjamin & Ellis (1990). Using a relevant theory developed by Benjamin (1987)
in an earlier paper, they derived a formula for the drift velocity of an oscillating
bubble from which it follows that the translational motion of the bubble can result
from second-order interactions between two neighbouring surface deformation modes.
However, the above formula allows us to calculate explicitly the drift velocity only
when the motions of surface modes are known.

The results of Benjamin & Ellis (1990) have since been used by Mei & Zhou
(1991). In an attempt to explain the dancing motion of a bubble in a sound field, they
studied the nonlinear resonance between the volume oscillations and two adjacent
shape modes of a bubble. In particular, they derived amplitude equations governing
the dynamics of these three modes and showed that the resonant interactions could
lead to chaotic oscillations of the shape modes and thus erratic drift according to
the formula obtained by Benjamin & Ellis. The theory of Mei & Zhou is, however,
incomplete as it assumes that there is no direct coupling between the translational
motion of the bubble and the dynamics of the shape modes.

Development of an adequate model of the bubble dancing requires consideration
of the coupling between translational motion, volume oscillations and surface modes.
An attempt to allow for this coupling has been made by Feng & Leal (1995). They
have derived coupled amplitude equations that govern the dynamics of the bubble
centroid, as well as volume oscillations and two adjacent shape modes. In doing so,
unlike Mei & Zhou, Feng & Leal did not assume the volume mode to be in resonance
with the isotropic pressure forcing. Their study verified that the instability of two
neighbouring shape modes results in a translational motion of the bubble.

As in the work of Feng & Leal (1995), the purpose of the present study is to derive
coupled equations that govern the volume oscillations of an acoustically driven bubble,
its translational motion and the shape modes evolving on the bubble surface. These
equations are then solved numerically to examine conditions when the bubble exhibits
a translational instability. Like Feng & Leal, we apply a perturbation analysis, where
the amplitudes of the shape modes and the translational velocity of the bubble are
small parameters, and derive the above-mentioned equations of motion with accuracy
up to quadratic terms in those quantities. Unlike Feng & Leal, who deal only with
two adjacent shape modes whose natural frequencies are taken to be approximately
equal to half the driving frequency, we allow for all shape modes and do not impose
any limitations on their natural frequencies. In the present analysis, we also take into
account that the shape modes can be excited not only parametrically by the volume
oscillations, but also through variations of the sound pressure over the surface of the
bubble.

2. Theory
Let us consider a gas bubble in an infinite incompressible inviscid liquid subject

to an acoustic wave field. For simplicity, we assume that deformations of the bubble
surface are axisymmetric and the translational motion of the bubble occurs along the
axis of symmetry. In practice, translations of bubbles in sound fields have, of course,
three spatial components. The theory developed in this study can, in principle, be
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extended to arbitrary asymmetric perturbations. However, the algebraic complexity
involved and the unwieldiness of the resulting expressions prevent us from carrying
out such an analysis in the present paper. We also expect that, if the forcing is
axisymmetric, as in the case of a plane standing wave considered here, axisymmetric
modes are dominant. Although taking account of asymmetric modes brings the
analysis closer to reality, it is improbable that something fundamentally new, from
the theoretical standpoint, will emerge as compared to the axisymmetric case. So we
assume that the perturbed surface S of the bubble is described by the equation

S(r, θ, t) = r − R(t) −
∞∑

n=2

sn(t)Pn(µ) = 0, (2.1)

where r and θ are spherical coordinates in a coordinate system whose origin coincides
with the bubble centroid, t is time, R(t) is the bubble radius, µ = cos θ , Pn is the
Legendre polynomial of order n, and sn(t) are the amplitudes of the shape modes.
Recall that, like Feng & Leal (1995), we seek to derive coupled equations that govern
the dynamics of the bubble volume, the translational motion and the shape modes,
correct to quadratic terms in the amplitudes of the shape modes and the translational
velocity of the bubble, assuming these quantities to be small. No restrictions are
imposed on the volume oscillations which are defined by R(t).

The velocity potential in the liquid, which should satisfy the Laplace equation, can
be written as

ϕ = −R2(t)Ṙ(t)

r
+

∞∑
n=0

an(t)

rn+1
Pn(µ), (2.2)

where the overdot denotes the time derivative and the coefficients an(t), which, like
sn(t), are assumed to be small, are determined by the boundary conditions at the
bubble surface. The liquid velocity is found from (2.2) to be

v = ∇ϕ =
R2(t)Ṙ(t)

r2
er −

∞∑
n=0

an(t)

rn+2
[(n + 1)Pn(µ)er + sin θP ′

n(µ)eθ ], (2.3)

where P ′
n(µ) = dPn(µ)/dµ. To obtain equations that govern the dynamics of sn(t) and

an(t), we first use the kinematic boundary condition

∂S

∂t
− u · ∇S + v · ∇S = 0 on S, (2.4)

where u(t) denotes the translational velocity of the bubble. Recall that this velocity
is considered to be a small quantity. From (2.1), we find

∂S

∂t
= −Ṙ(t) −

∞∑
n=2

ṡn(t)Pn(µ), (2.5)

∇S|S ≈ er +
eθ sin θ

R(t)

∞∑
n=2

sn(t)P
′
n(µ). (2.6)

Note that although (2.6) gives ∇S only up to linear terms, this is, as evident from
(2.4), quite enough for our analysis.



4 A. A. Doinikov

The liquid velocity v on the bubble surface S, with accuracy up to second-order
terms, is given by

v|S ≈ Ṙer

R2

[
R2 −

∞∑
n=2

sn

(
2R − 3

∞∑
m=2

smPm

)
Pn

]

−
∞∑

n=0

an

Rn+2

(
1 − n + 2

R

∞∑
m=2

smPm

)
[(n + 1)Pner + sin θP ′

neθ ], (2.7)

where the dependence on t and µ is omitted for the sake of simplicity. Substituting
(2.5)–(2.7) into (2.4), we obtain

R2a0 + (2a1R + R4u)µ +

∞∑
n=2

(
R4ṡn + 2ṘR3sn +

(n + 1)an

Rn−2

)
Pn

=

∞∑
n=2

{
2(Ra0 + 3a1µ)snPn + (R3u − a1)(1 − µ2)snP

′
n

+

∞∑
m=2

[(
3ṘR2snsm +

(m + 1)(m + 2)snam

Rm−1

)
PnPm − snam

Rm−1
(1 − µ2)P ′

nP
′
m

]}

(2.8)

with u = |u(t)|. To proceed, we need expansions of µPn(µ), (1−µ2)P ′
n(µ), Pn(µ)Pm(µ)

and (1 − µ2)P ′
n(µ)P ′

m(µ) in terms of the Legendre polynomials. The expansions of the
first two products are familiar (Abramowitz & Stegun 1972):

µPn(µ) =
nPn−1(µ) + (n + 1)Pn+1(µ)

2n + 1
, (1 − µ2)P ′

n(µ) =
n(n + 1)

2n + 1
[Pn−1(µ) − Pn+1(µ)] .

(2.9)

The other two expressions are found by using the so-called Clebsch–Gordan expansion
(Varshalovich, Moskalev & Khersonskii 1975). The result is as follows:

Pn(µ)Pm(µ) =

∞∑
l=0

Cl(n, m)Pl(µ), (1 − µ2)P ′
n(µ)P ′

m(µ) =

∞∑
l=0

Dl(n, m)Pl(µ). (2.10)

The coefficients Cl(n, m) are determined by

Cl(n, m) = (nm00 | nml0)
2
, (2.11)

where (nm00 | nml0) denotes the Clebsch–Gordan coefficients as defined in
Abramowitz & Stegun (1972). For the coefficients Dl(n, m), we have

Dl(n, m) =
n(n + 1)

2n + 1

M∑
k=1

(2m − 4k + 3)[Cl(n − 1, m − 2k + 1)

− Cl(n + 1, m − 2k + 1)], (2.12)

where M = m/2 for even values of m, and M =(m + 1)/2 for odd values of m. Note
also that the following identities are valid, which follow from the symmetry of the
left-hand sides of equations (2.10) with respect to the indices n and m,

Cl(n, m) = Cl(m, n), Dl(n, m) = Dl(m, n). (2.13a)
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The properties of the Clebsch–Gordan coefficients also give

Cl(n, m) =
2l + 1

2n + 1
Cn(l, n) =

2l + 1

2m + 1
Cm(n, l). (2.13b)

These identities make the explicit calculation of the coefficients Cl(n, m) and
Dl(n, m) much easier. It should be pointed out that we have used here a
simplified (axisymmetric) form of the Clebsch–Gordan expansion. Turning back
to the assumption of axial symmetry, if we wish to extend the present analysis
to asymmetric perturbations, the Legendre polynomials in the foregoing calculation
should be changed to spherical harmonics and the general form of the Clebsch–
Gordan expansion should then be applied. However, as mentioned above, this results
in very cumbersome equations.

Substituting (2.9) and (2.10) into (2.8) and equating quantities at the same Legendre
polynomials, we find

a0(t) = H0(t), a1(t) = − 1
2
R3u + 3

10
R2s2u + H1(t), (2.14)

an(t) = − Rn+1

n + 1
[2snṘ + ṡnR] +

3nRn+1u

2

[
sn+1

2n + 3
− (1 − δ2n)sn−1

2n − 1

]
+ Hn(t), n � 2,

(2.15)

where

Hn(t) =
Rn

n + 1

∞∑
l,m=2

{
Ṙ

[
2Dn(l, m)

(l + 1)
− (2l + 1)Cn(l, m)

]
slsm

+ R

[
Dn(l, m)

(l + 1)
− (l + 2)Cn(l, m)

]
ṡ lsm

}
(2.16)

and δ2n is the Kronecker delta.
The next step is the use of the normal stress boundary condition

pg = p|S + pst + pex |S, (2.17)

where pg is the pressure of the gas within the bubble, p|S is the pressure in the liquid
at the bubble surface, pst is the pressure of surface tension, and pex |S is the external
(acoustic) pressure acting on the bubble. The gas pressure is assumed to obey the
adiabatic law

pg = Pg0

(
V0

V (t)

)γ

, (2.18)

where Pg0 = P0 + 2σ/R0 is the equilibrium gas pressure, P0 is the hydrostatic pressure
in the liquid, σ is the surface tension coefficient, R0 is the equilibrium bubble radius,
V0 = (4/3)πR3

0 is the equilibrium bubble volume, V (t) is the instantaneous bubble
volume, and γ is the ratio of specific heats of the gas. Correct to second order, the
gas pressure is found to be

pg ≈ Pg0

(
R0

R

)3γ
(

1 − 3γ

R2

∞∑
m=2

s2
m

2m + 1

)
. (2.19)

The pressure in the liquid is specified by

p|S = P0 − ρ

(
∂ϕ

∂t
− u · v +

v2

2

)
S

, (2.20)

where ρ denotes the density of the liquid. The explicit expression for p|S , accurate
to second-order terms, is not given here because of its unwieldiness. The pressure of
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surface tension, assuming that σ is small, can be written as (Prosperetti 1977)

pst = σ∇ · n ≈ 2σ

R
+

σ

R2

∞∑
n=2

(n − 1)(n + 2)snPn(µ), (2.21)

where n is the outward unit normal to S. Finally, the external pressure is represented
by

pex |S =

∞∑
n=0

An(t)Pn(µ), (2.22)

where the coefficients An(t) are determined by the type of incident field. In
Appendix A, they are calculated for the case of a plane standing wave, which
will be analysed below in this paper.

Substituting (2.19)–(2.22) into (2.17), using (2.9), (2.10), (2.14)–(2.16) and then
equating quantities at the same Legendre polynomials, we obtain a set of coupled
equations that govern the dynamics of the volume oscillations, translational motion
and shape modes, with accuracy up to second-order terms in sn,

RR̈ + 3
2
Ṙ2 =

1

ρ

[
Pg0

(
R0

R

)3γ

− 2σ

R
− P0 − A0

]
+

u2

4
+ f0(t), (2.23)

(
R − 7

5
s2

)
u̇ +

(
3Ṙ − 12Ṙ

5R
s2 − 9

5
ṡ2

)
u = − 2

ρ
A1 + f1(t), (2.24)

Rs̈n + 3Ṙṡn +

[
(n2 − 1)(n + 2)σ

ρR2
− (n − 1)R̈

]
sn

= −n + 1

ρ
An − 9δ2n

4
u2 + gn(t) + fn(t), n � 2, (2.25)

where

fn(t) = −3γPg0R
3γ

0 δn0

ρR3γ+2

∞∑
l=2

s2
l

2l + 1
+

∞∑
l,m=2

slsm

[
R̈

R
α1(n, l, m) +

Ṙ2

R2
α2(n, l, m)

]

+ α3(n, l, m)s̈ lsm + α4(n, l, m)
Ṙ

R
(ṡ lsm + ṡmsl) + α5(n, l, m)ṡ l ṡm, (2.26)

gn(t) =
n + 1

2(2n + 3)

[
6(n + 1)

Ṙ

R
sn+1u + (5n + 2)sn+1u̇ + 3(2n + 1)ṡn+1u

]

− (n + 1)(1 − δ2n)

2(2n − 1)

[
6(n − 1)

Ṙ

R
sn−1u + nsn−1u̇ + 3(2n − 1)ṡn−1u

]
, (2.27)

α1(n, l, m) =
2Dn(l, m)

m + 1
− (2l − n)Cn(l, m), (2.28)

α2(n, l, m) = (2l − n)Cn(l, m) − 2(l − n)Dn(l, m)

(l + 1)(m + 1)
, (2.29)

α3(n, l, m) =
Dn(l, m)

l + 1
− (l − n + 1)Cn(l, m), (2.30)
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α4(n, l, m) =
(2l + n + 3)Dn(l, m)

(l + 1)(m + 1)
− (2l − n)Cn(l, m), (2.31)

α5(n, l, m) =
(2l + n + 3)Dn(l, m)

2(l + 1)(m + 1)
− 1

2
(2l − n + 3)Cn(l, m). (2.32)

In these equations, for simplicity, the dependence on t in the functions that we have
already met is omitted. Equation (2.23) governs the volume oscillation of the bubble,
(2.24) its translational motion, and (2.25) the dynamics of the shape modes. All the
equations are coupled owing to the functions fn(t) and gn(t), as well as the presence
of the term u2 on the right-hand sides of (2.23) and (2.25). Note also that although the
translational velocity u was assumed here to be small, (2.23) and (2.24) are valid for
arbitrary values of u. This follows from comparison of these equations with similar
equations which were obtained earlier (except, of course, for the shape-mode terms),
not restricting the magnitude of the translational velocity (Kuznetsov & Shchekin
1973; Harkin, Kaper & Nadim 2001). In the next section, we shall restrict our
consideration to the first three shape modes, neglecting in (2.23)–(2.27) all the modes
higher than s4. The truncated equations are more amenable to analysis since they
allow us to see the real structure of the functions fn(t).

3. Equations accurate to the fourth mode
When (2.23)–(2.27) are taken with accuracy up to the fourth shape mode s4, we

obtain the following set of equations:

RR̈ + 3
2
Ṙ2 =

1

ρ

[
Pg0

(
R0

R

)3γ

− 2σ

R
− P0 − A0 − 4ηṘ

R

]
+

u2

4
+ f

(4)
0 (t), (3.1)

(
R − 7

5
s2

)
u̇ +

(
3Ṙ − 12Ṙ

5R
s2 − 9

5
ṡ2

)
u = − 2

ρ
A1 + f

(4)
1 (t) − 18ηu

ρR
, (3.2)

Rs̈2 + 3Ṙṡ2 +

(
12σ

ρR2
− R̈

)
s2 = − 3

ρ
A2 − 9

4
u2 + f

(4)
2 (t) + g

(4)
2 (t), (3.3)

Rs̈3 + 3Ṙṡ3 +

(
40σ

ρR2
− 2R̈

)
s3 = − 4

ρ
A3 + f

(4)
3 (t) + g

(4)
3 (t), (3.4)

Rs̈4 + 3Ṙṡ4 +

(
90σ

ρR2
− 3R̈

)
s4 = − 5

ρ
A4 + f

(4)
4 (t) + g

(4)
4 (t), (3.5)

where

f
(4)
0 (t) =

1

30

(
8Ṙ2

R2
s2
2 − 6s2s̈2 +

8Ṙ

R
s2ṡ2 − 7ṡ2

2

)

+
1

56

(
12Ṙ2

R2
s2
3 − 8s3s̈3 +

12Ṙ

R
s3ṡ3 − 9ṡ2

3

)

+
1

90

(
16Ṙ2

R2
s2
4 − 10s4s̈4 +

16Ṙ

R
s4ṡ4 − 11ṡ2

4

)

− 3γPg0R
3γ

0

ρR3γ+2

(
s2
2

5
+

s2
3

7
+

s2
4

9

)
, (3.6)
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f
(4)
1 (t) =

3

35

[
4

(
R̈

R
+

3Ṙ2

R2

)
s2s3 + 2s̈2s3 − 3s2s̈3 +

12Ṙ

R
(ṡ2s3 + s2ṡ3) − 3ṡ2ṡ3

]

+
1

21

[
6

(
R̈

R
+

3Ṙ2

R2

)
s3s4 + 3s̈3s4 − 4s3s̈4 +

18Ṙ

R
(ṡ3s4 + s3ṡ4) − 3ṡ3ṡ4

]
, (3.7)

f
(4)
2 (t) =

2

7

(
2Ṙ2

R2
s2
2 +

2Ṙ

R
s2ṡ2 − ṡ2

2

)

+
2

21

[
8

(
R̈

R
+

2Ṙ2

R2

)
s2s4 + 7s̈2s4 − 3s2s̈4 +

20Ṙ

R
(ṡ2s4 + s2ṡ4) + ṡ2ṡ4

]

+
1

42

[(
4R̈

R
+

23Ṙ2

R2

)
s2
3 + 2s3s̈3 +

35Ṙ

R
s3ṡ3 − 13

4
ṡ2

3

]

+
8

693

[(
10R̈

R
+

41Ṙ2

R2

)
s2
4 + 5s4s̈4 +

71Ṙ

R
s4ṡ4 − ṡ2

4

]
, (3.8)

g
(4)
2 (t) =

9

14

(
6Ṙ

R
s3u + 4s3u̇ + 5ṡ3u

)
, (3.9)

f
(4)
3 (t) = 2

15

(
9Ṙ2

R2
− R̈

R

)
s2s3 + 4

15
s̈2s3 +

2Ṙ

5R
(ṡ2s3 + s2ṡ3) − 3

5
ṡ2ṡ3 − 1

15
s2s̈3

+ 2
11

(
R̈

R
+

7Ṙ2

R2

)
s3s4 + 3

11
s̈3s4 +

10Ṙ

11R
(ṡ3s4 + s3ṡ4) − 1

11
ṡ3ṡ4, (3.10)

g
(4)
3 (t) = 2

9

(
24Ṙ

R
s4u + 17s4u̇ + 21ṡ4u

)
− 6

5

(
4Ṙ

R
s2u + s2u̇ + 5ṡ2u

)
, (3.11)

f
(4)
4 (t) = − 1

35

[
16

(
3R̈

R
+

2Ṙ2

R2

)
s2
2 + 6s2s̈2 +

176Ṙ

R
s2ṡ2 + 71ṡ2

2

]

+ 8
77

[
2

(
6Ṙ2

R2
− R̈

R

)
s2s4 + 5s̈2s4 − s2s̈4 +

3Ṙ

R
(ṡ2s4 + s2ṡ4) − 6ṡ2ṡ4

]

+ 9
616

[
4

(
9Ṙ2

R2
− 4R̈

R

)
s2
3 + 8s3s̈3 − 12Ṙ

R
s3ṡ3 − 27ṡ2

3

]

+ 9
1001

[
8Ṙ2

R2
s2
4 + 2s4s̈4 +

8Ṙ

R
s4ṡ4 − ṡ2

4

]
, (3.12)

g
(4)
4 (t) = − 5

14

(
18Ṙ

R
s3u + 4s3u̇ + 21ṡ3u

)
. (3.13)

These equations have been investigated numerically. To make them more suitable
for this process, we have incorporated viscous damping of volume oscillations (the
last term in brackets on the right-hand side of (3.1)) and supplemented the equation
of translation motion with the viscous force in the form of the Levich drag (Levich
1962) (the last term on the right-hand side of (3.2)). The quantity η in the above
terms denotes the dynamical viscosity of the liquid.
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Before proceeding to numerical calculations, we shall point out some interesting
observations which are apparent from (3.1)–(3.13). First, it is worth noting that
(3.7) is in complete agreement with the previously established fact, namely, that the
translational motion of the bubble can be induced by the second-order interactions of
two neighbouring surface modes. Analysis of the other equations allows us to reveal
additional features, which have not been noted previously, inherent in the mutual
interactions of the shape modes as well as in the interaction between the shape modes
and the translational motion. It is easy to see that the translational motion is able to
induce oscillations of all other modes even if they are initially nil, the external field
is absent and chance fluctuations are negligible. Indeed, the terms proportional to
u2 on the right-hand sides of (3.1) and (3.3) show that the translational motion can
excite the volume and quadrupole modes. According to (3.12), the quadrupole mode
can, in turn, excite the fourth mode, and (3.11) shows that nonlinear interactions
between u and s2 can also give rise to the third mode. It can be shown that this
property of the translational motion is shared by the third mode. The modes s2 and
s4 do not have this ability. These modes can excite each other and the volume mode
but they are unable to excite the third mode and the translational motion if other
disturbances are absent. From these facts, it follows that odd modes are more efficient
as regards introduction of perturbations into the system and promotion of their
evolution.

Numerical solutions of (3.1)–(3.13) have been obtained for the case of air
bubbles in water. The values used for hydrostatic pressure, liquid density, surface
tension, viscosity, sound speed and specific heat ratio are P0 = 1 bar, ρ = 998 kg m−3,
σ = 0.0725 Nm−1, η =0.001 kg (m−1 s−1), c = 1500 m s−1 and γ = 1.4.

Figure 1 illustrates the fact that the translational motion of a bubble is able to
excite the volume pulsation and the shape modes of all orders even if any other
disturbances are absent. In particular, the oscillations shown in figure 1 develop when
the initial translational velocity of the bubble u(0) is set equal to 0.2 m s−1. Spectrum
analysis reveals that the peculiarity of this type of perturbation is that the dominant
frequency in the Fourier spectrum of each mode is the natural frequency of that
mode. The values of the natural frequencies of the modes are shown in the caption
for figure 1. Figure 2 shows oscillations that arise from the disturbance of the second
(quadrupole) mode, s2(0) = 1 µm. In this case, only the even (volume and fourth)
modes are excited. Their oscillations are found by spectrum analysis to contain two
main frequency components; at the eigenfrequency of the forced mode and at twice
the natural frequency of the driving (second) mode, the latter being dominant. In the
well-known work of Longuet-Higgins (1989a, b), it was first pointed out that shape
oscillations of bubbles should be accompanied by the excitation of volume pulsations
whose frequency is twice the frequency of the shape oscillation. This effect provides a
possible mechanism of underwater sound generation in the ocean. In this connection,
it is interesting to note that the translational disturbance has the same property,
except that the spectrum of the forced volume pulsation in this case is dominated
by the natural frequency of the volumetric mode. Comparison of figures 1(a) and
2(a) gives an idea of the amplitude of this pulsation. Ffowcs Williams & Guo (1991)
mention in their paper that in the ocean environment, bubbles usually move, owing
to buoyancy or background pressure gradients, with a typical velocity of the order of
0.2 m s−1. The volume pulsation in figure 1(a) is just generated at this value of the
initial translational velocity, all other parameters being the same as in figure 2(a). It is
seen that the amplitude of the volume pulsation in figure 1(a) is less, but not far from
the amplitude of the volume pulsation in figure 2(a), where the surface distortion
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Figure 1. The volume and shape oscillations of a bubble (R0 = 50 µm) resulting from the
initial translational perturbation u(0) = 0.2m s−1. The natural frequencies of the bubble modes
are f0 = 66435 Hz, f2 = 13291Hz, f3 = 24266Hz, f4 = 36399Hz.

s2(0) amounts to 2% of R0. This suggests that translational disturbances of bubbles
also contribute to oceanic ambient noise.

Figure 3 shows oscillations that are generated by the disturbance of the third
mode, s3(0) = 1 µm. Like the translation, the third mode excites all the other modes.
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Figure 2. The bubble oscillations induced by the initial perturbation of the second mode
s2(0) = 1 µm. The other parameters are the same as in figure 1.

The Fourier spectra of the volume, second and fourth modes are found to be of
two-component form, like the spectra of the oscillations shown in figures 2(a) and
2(c), namely, one of the two dominant components is at the eigenfrequency of the
forced mode and the other is at twice the natural frequency of the driving (third)
mode. The spectrum of the translational oscillation shown in figure 3(b), owing to
the structure of the function f

(4)
1 (t), is much richer, see figure 4. It exhibits six main

components, including the harmonics with the frequencies f3 and 3f3 which occur
because the second and fourth modes have the 2f3 components. It may well be that
it is the complexity of the translational spectrum that renders this type of motion
susceptible to chaotic effects.

Figure 5 demonstrates the initiation of the erratic dancing motion of a bubble in
a standing acoustic wave, the bubble being driven below the fundamental resonance.
The coefficients An, which specify the type of external field in (3.1)–(3.5), were taken
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Figure 3. The bubble oscillations induced by the initial perturbation of the third mode
s3(0) = 1 µm. The other parameters are the same as in figure 1.
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Figure 4. Fourier spectrum of the translation shown in figure 3(b).

from Appendix A. Figures 5(a)–5(c) show the evolution of the shape modes. The
rapid growth of the unstable third mode can be seen to lead to instability of the
second mode, and their nonlinear interaction (sustained also by the interaction of
the third and fourth modes) results further in erratic translational motions of the
bubble. Evidence of the translational instability first appears in the translational
velocity of the bubble, see figure 5(d). The motion of the bubble centroid and the
onset of the dancing are shown in figure 5(e). The position zero of the y-axis on
this plot corresponds to the acoustic pressure antinode. On analysis of the bubble
natural frequencies, whose values are given in the caption for figure 5, it is easy
to verify that in the case under consideration there are no resonances between the
forcing and the bubble modes as well as between the modes themselves. This point
distinguishes the present case from that investigated by Feng & Leal (1995), where
it was assumed that the natural frequencies of the two considered shape modes are
approximately half the forcing frequency. Figure 5 demonstrates that even with no
resonances, the translational instability can develop very quickly. The case where
a bubble is driven above its fundamental resonance is illustrated by figure 6. The
dynamics of the bubble centroid are shown in figure 6(e). It is seen that the bubble
initially moves away from the pressure antinode. However, the development of the
translational instability causes it to turn back and make translational jumps about
the antinode.

An interesting case of stabilization is shown in figure 7. The acoustic pressure
amplitude Pa is here much larger than in the two preceding cases. Therefore the shape
oscillations initially develop very vigorously and reach great amplitudes (figure 7a–c).
This leads to the onset of the dancing motion, figures 7(d) and 7(e). Then, however,
the oscillations of the shape modes decay and become stable. As a result, the
dancing motion dies out. An increase of 0.2% in Pa (from 0.44P0 to 0.441P0), or
a change of 1% in the driving frequency f (from 20 kHz to 20.2 kHz or 19.8 kHz),
is sufficient for this stabilization to give way to a violent development of instability.
Numerical simulations reveal that this effect is caused by the terms f (4)

n (t) and g(4)
n (t) on

the right-hand sides of (3.3)–(3.5), in other words, by the nonlinear coupling of the
shape modes. If we drop these terms, retaining only the terms An(t) (which now
play the role of small perturbations for the parametric excitation of the shape modes
by the volume pulsation), then we have the shape oscillations shown in figure 8.
They are stable as well, but their amplitudes are much smaller than in figure 7.
Generally speaking, this case is of considerable interest by itself because we observe
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Figure 5. Dynamics of a bubble in an acoustic standing wave: driving below resonance
(R0 = 40 µm, f = 28.3 kHz, Pa = 0.28P0). (a) second mode, (b) third mode, (c) fourth mode,
(d) translational velocity, (e) position of the bubble centroid (λ= c/f ). The natural bubble
frequencies are f0 = 83266Hz, f2 = 18575Hz, f3 = 33913 Hz, f4 = 50869Hz.
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Figure 6. Dynamics of a bubble in an acoustic standing wave: Driving above resonance
(R0 = 50 µm, f = 100 kHz, Pa = 0.35P0). (a) second mode, (b) third mode, (c) fourth mode,
(d) translational velocity, (e) position of the bubble centroid (λ= c/f ). The natural bubble
frequencies are f0 = 66435Hz, f2 = 13291 Hz, f3 = 24266Hz, f4 = 36399Hz.
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Figure 7. Dynamics of a bubble in an acoustic standing wave: example of stabilization (R0 =
50 µm, f =20kHz, Pa = 0.44P0). The natural bubble frequencies are the same as in figure 6.
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Figure 8. The same case as in figure 7 but dropping the terms f
(4)
n (t) and g

(4)
n (t) on the

right-hand sides of (3.3)–(3.5).

stable shape oscillations of quite a large bubble (R0 = 50 µm) in a fairly strong field
(Pa =0.44P0). Calculations show that if the driving frequency is changed from 20 kHz
to 20.5 kHz (or Pa to 0.446P0), the oscillations in figure 8 become unstable. The
dependence of the stability of shape oscillations on values of the driving frequency
is, however, poorly elucidated in the literature. Therefore, it is hard to tell now why
this occurs for the present set of parameters. Turning back to comparison of figures 7
and 8, we can conclude that the nonlinear coupling between the shape modes leads
to a great increase in their starting amplitudes. However, shortly thereafter, owing
to the same coupling, the shape oscillations decay, and the system becomes stable
again.

4. Comparison with Feng & Leal (1995)
Numerical examples given by Feng & Leal (1995) refer to the interaction of the

fifth and sixth shape modes. To carry out analogous calculations, (2.23)–(2.27) should
be taken with accuracy up to mode s6. As a result, (3.1)–(3.5) are supplemented
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Figure 9. Translational motion of a bubble due to the interaction of the fifth and sixth shape
modes which evolve from radial oscillation via a parametric instability. Initial perturbations
of the other modes are zero.
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Figure 10. The bubble is driven by a plane standing acoustic wave. The other parameters
are the same as in figure 9.

with two equations

Rs̈5 + 3Ṙṡ5 +

(
168σ

ρR2
− 4R̈

)
s5 = − 6

ρ
A5 + f

(6)
5 (t) + g

(6)
5 (t), (4.1)

Rs̈6 + 3Ṙṡ6 +

(
280σ

ρR2
− 5R̈

)
s6 = − 7

ρ
A6 + f

(6)
6 (t) + g

(6)
6 (t), (4.2)

and the functions f (4)
n (t) and g(4)

n (t) on their right-hand sides are replaced with f (6)
n (t)

and g(6)
n (t), which, along with the similar functions appearing in (4.1) and (4.2), are

given in Appendix B.†

† Appendix B is available as a supplement to the online version of this paper, or from the author
or JFM Editorial Office, Cambridge.
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Feng & Leal used non-dimensional parameters. Converting them to dimensional
values and applying them to an air bubble in water, for figure 6 of their paper, we
obtain R0 = 138 µm, f = 26716 Hz and Pa = 0.016 bar. We used the same values for R0

and f , and a slightly lower value for Pa . Our approach, unlike Feng & Leal’s, does not
allow for viscous damping of shape modes. Therefore, their growth occurs faster. To
slow down this process and extend the interval of observation, we set Pa = 0.013 bar.
Feng & Leal assumed that the fifth and sixth modes are parametrically excited by the
spherical volume mode that is forced by an isotropic pressure oscillation at infinity.
Modelling the same situation, we set pex(t) = −Pa sin ωt and s5(0) = s6(0) = 0.001R0,
while initial perturbations of the other modes are zero. The results of the simulation
are presented in figure 9. We see that, just as in Feng & Leal (1995), the instability
of the sixth mode, figure 9(b), leads to instability of the fifth mode, figure 9(a), which
is otherwise stable. The instability of these two neighbouring shape modes results in
a translational motion of the bubble (figure 9c, d). We can also see from figure 9(b)
that, as in Feng & Leal (1995), the onset of the erratic translation damps out the
oscillation of the sixth mode.

Figure 10 illustrates the case where the same bubble is driven by a plane standing
acoustic wave with the same values of f and Pa as in figure 9. In other words, all
the bubble modes are now subjected to perturbations, which are specified by the
coefficients An(t). The bubble is to the right of the pressure antinode in the direction
of wave propagation at an initial distance of 100 µm. We can see that, although
the amplitude of the unstable sixth mode runs up to high values, the translational
instability is not observed. It appears to be lost against the background of the
translational motion caused by the primary Bjerknes force. Besides, a relatively small
initial perturbation of the fifth mode does not allow the latter to develop adequately
and thereby the performance of its interaction with the sixth mode is reduced. As a
consequence, the bubble moves towards the pressure node without any visible jumps.
This result, especially when compared to figures 5 and 6, seems to suggest that the
influence of shape modes of high order on translational motions of bubbles in real
(anisotropic) acoustic fields is in general weak and hence the case considered by
Feng & Leal is of academic interest rather than of practical importance.

5. Conclusion
A set of coupled equations has been derived that governs volume pulsations of

a bubble, its translational motion and shape oscillations evolving on the bubble
surface. Using a perturbation analysis, where the amplitudes of the shape modes
and the translational velocity of the bubble are assumed to be small parameters,
the equations of the bubble motions are obtained with accuracy up to quadratic
terms in those quantities. The equations obtained allow us to study the translational
instability of an acoustically driven bubble that is known as ‘dancing motion’. Unlike
earlier work on this subject, where only two adjacent shape modes with given natural
frequencies are taken into account, we allow for all shape modes and do not impose
any limitations on their natural frequencies. As a result, the present analysis reveals
additional features, which have not been noted previously, inherent in the mutual
interactions of the shape modes as well as in the interaction between the shape modes
and the translational motion. In particular, it is shown that an odd shape mode
and the translational motion can excite all other modes, including the volume mode,
even if they are initially nil, the external field is absent and chance fluctuations are
negligible. Even shape modes do not have this ability. They can only excite each
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other and the volume mode. Thus, it is apparent that odd modes are more important
as regards introduction of perturbations into the system and promotion of their
evolution. It is also noted that translational disturbances of bubbles, as they are able
to excite volume pulsations, can contribute to oceanic ambient noise parallel with the
known shape-mode mechanism. It is shown that the translational instability of an
acoustically driven bubble can develop very quickly even if there are no resonances
between the forcing and the bubble modes as well as between the modes themselves.
This feature distinguishes the present analysis from all previous studies where specific
resonant cases are only considered.

Appendix A. Coefficients An(t) in a plane standing wave
In the case of a plane standing wave, the acoustic pressure at an arbitrary point of

the host liquid can be written as

pex = −Pa sin ωt cos(kz + k · r), (A 1)

where Pa is the pressure amplitude, ω the angular driving frequency, k the wavenumber
in the host liquid, z(t) the location of the bubble centroid with respect to the nearest
pressure antinode, and r the position vector whose origin coincides with the bubble
centroid. Using the well-known expansion (Abramowitz & Stegun 1972)

exp(ikrµ) =

∞∑
n=0

(2n + 1)injn(kr)Pn(µ), (A 2)

where jn denotes the spherical Bessel function of order n, we find

cos(kz + k · r) = 1
2

∞∑
n=0

(2n + 1)injn(kr)[exp(ikz) + (−1)n exp(−ikz)]Pn(µ). (A 3)

Substituting (A 3) into (A 1), setting r =R(t) and comparing with (2.21), we obtain

An(t) = − 1
2
(2n + 1)injn(kR)[exp(ikz) + (−1)n exp(−ikz)]Pa sin ωt. (A 4)

Appendix B. Expressions for the functions fn(t) and gn(t) accurate to the sixth
mode

When (2.26) and (2.27) are taken with accuracy up to the sixth shape mode s6, we
obtain
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ṡ2ṡ6

− 75

154

(
3Ṙ2
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ṡ4s4 − 284

495
ṡ2
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